
DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997

APPENDIX D

GCCS/JOPES CORE BACKUP/RECOVERY SOFTWARE

TAPE
DRIVE

LOG
LOG

JANUARY

MONDAY TUESDAY - FRIDAY

PM PM

STRUCTURAL CHANGE

LOG

FULL CUMULATIVE

TAPE LIBRARY

LOG

STRUCTURAL CHANGE :

STANDARD-CYCLE EVENT-DRIVEN:

UNIX FULL DB BACKUP SCRIPT
(DATA & STRUCTURES)

UNIX CUMULATIVE DB BACKUP SCRIPT
(DATA & STRUCTURES)

ORACLE FULL DB EXPORT
(STRUCTURES)

UNIX ARCHIVED-REDO-LOG BACKUP SCRIPT
(DATA & STRUCTURES)

LEGEND

AUTOMATED
MANUAL

REDO LOG

CHNG

CHNG

CONTROL FILE
BACKUP

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-1

Figure D-1: Backup/Recovery Process.

APPENDIX D - GCCS CORE BACKUP/RECOVERY SOFTWARE

GCCS Core backup/recovery software is designed to perform automated full, cumulative, and
redo log backup/restore operations. The driving design issues include ease of use, online backup
capability, and database recovery assurance. Figure D-1 illustrates the automated online backup
capability. Maintenance of backup/recovery software will require in-depth experience with complex
Bourne shell Unix scripts and SQL*Plus commands.

User procedures for backup/recovery programs are described in the GCCS System Services
Administrator’s Manual, Appendix C, dated 31 March 1997.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-2

D.1 SYSTEM REQUIREMENTS

Backup/recovery software maintenance requires a correctly configured server. Access to a
dedicated 8mm or 4mm external backup tape drive is critical to backup/recovery development and
testing.

The following backup/recovery requirements must be supported in the maintenance
environment:

C SunOS (Solaris) Release 2.3 should be installed on the maintenance platform.

C ORACLE Version 7.1.3 should be installed on the maintenance platform.

C An externally identified <oradba> account must exist with connect, resource, and
dba database privileges. A <secman> unix account should also exist.

C The <oradba> and <secman> user must be included as part of the tty group in the
/etc/group file. This allows the backup program messages to be displayed on the
console.

C The archive configuration parameters in $ORACLE_HOME/dbs/configGCCS.ora
must be entered as follows:

log_archive_dest = /oracle/smback/arch/GCCS
log_archive_format = %_%s.log

The /GCCS in the directory path is the database name or $ORACLE_SID and
represents the name of the log file. This configuration will produce the following
logs: (GCCS_1.log, GCCS_2.log, GCCS_3.log, etc.)

C All backup/recovery directories and files must be owned by the <oradba> user, dba
group, and the directory structure cannot be changed when the software is installed.
The top level directory must be $ORACLE_HOME/RECOVERY with all the
subdirectories the same as the system that files were extracted from with all original
unix file permissions intact.

C Online redo log archiving should be enabled and configured for a production site. A
log file size of at least 10MB is recommended.

C All data files in the $ORACLE_SID=GCCS database must be readable and writable
by the <oradba> user. The <oradba> user umask should default to read/write to
ensure proper permissions when expanding tablespaces. To prevent inadvertent
deletion of data files by other users, only users with access to the dba group should
be permitted to delete data files.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-3

C The contingency redo log backup functionality only searches for unused space on
mount points owned by <oracle>. As of release patch SMDBP.6, only the archived
redo log backup disk is owned by <oracle>, causing the contingency redo log backup
functions to be inoperative.

D.2 ARCHITECTURE

The server backup/recovery software consists of automated programs executed from a
character-based menu interface. The menu interface is started at the Unix prompt via the br_main
startup script. The startup script is accessible from any current working directory because it is
specified in the <oradba> user .login path. The br_main startup script calls the br_main_menu
program which displays the screen shown in Figure D-2.

B A C K U P A N D R E C O V E R Y M E N U

ONLINE BACKUP OPTIONS: RECOVERY OPTIONS:

(F) FULL BACKUP (RF) RESTORE FULL BACKUP

(C) CUMULATIVE BACKUP (RC) RESTORE CUMULATIVE BACKUP

(R) REDO LOG BACKUP (RR) RESTORE REDO LOGS

UTILITIES:

(A) CHANGE AUTOMATIC BACKUP SCHEDULE

(B) BACKUP STATUS

(D) DEVICE/DATABASE SETTINGS

 (Q) QUIT

 Please Select an Option and Press <ENTER>.

Figure D-2: Backup and Recovery Menu Screen.

The progress flow of each program is initiated when the program is selected from the
BACKUP AND RECOVERY MENU. Figure D-3 shows the overall backup/recovery process
architecture. The figure number for each program's architecture diagram is referenced in the overall
backup/recovery process architecture diagram.

“BACKUP AND RECOVERY MENU”

Backup programs Restore programs

Program
Initialization

Process

Tape
Verification

Process

Database
File

Backup
Process

Auxiliary File
Backup
Process

Status
Report

Process

Program
Initialization

Process

Tape
Verification

Process

Database
File

Backup
Process

Auxiliary File
Backup
Process

Status
Report

Process

Program
Initialization

Process

Tape
Verification

Process

Database
File Restore

Process

Status
Report

Process

Program
Initialization

Process

Status
Report

Process

Tape
Verification

Process

Contingency
Process

Contingency
Space
Usage

Process

Redo Log
Backup
Process

Program
Initialization

Process

Tape
Verification

Process

Database
File Restore

Process

Status
Report

Process

Program
Initialization

Process

Restore
Preparation

Process

Redo Log
Restore
Process

Redo Log
Relocation

Report
Process

Status
Report

Process

Tape
Verification

Process

“FULL
BACKUP”

“CUMULATIVE
BACKUP ”

“REDO LOG
BACKUP”

“CUMULATIVE
RESTORE ”

“FULL
RESTORE ”

“REDO LOG
RESTORE ”

br_main Startup script

Figure D-4, Part I;
Figure D-5, Part II;

br_main_menu Program

Figure D-6
br_back_full

Program

Figure D-7;
br_back_cum

Program

Figure D-8, Part I; Figure D-9, Part II;
Figure D-10, Part III;

br_back_redo
Program

Figure D-11;
br_restore_full

Program

Figure D-12;
br_restore_cum

Program
Figure D-13, Part I;
Figure D-14, Part II;

br_restore_redo
Program

DBMM-96-D0048-0006
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 48 16 February 1996D-4

Figure D-3: Backup and Recovery Architecture Overview.

PROGRAM INITIALIZATION PROCESS

Main Body

Environment variable declaration
User verification

Main Body

Display menu.Wait for input

exec br_main_menu program

Redisplay the Backup/Recovery
Main Menu

EXECUTE
BACKUP
OPTIONS

EXECUTE
RESTORE
OPTIONS

EXECUTE
UTILITY
OPTIONS

Exit

DISPLAY PROCESS

Quit

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-5

Figure D-4: br_main_menu Program, Part I.

The composition of each program is illustrated by process, module, and main body:

C A process is a logical grouping of modules and represents a critical operation.

C A module is a collection of Unix commands which performs a task and is similar to
the construct in the “C” programming language. A module has a name and is called
when the task is required.

C The main body represents a collection of Unix commands executed in the main body
of the code and performs a particular task. Generally, code in the main body performs
a particular task once, while code in a module performs a particular task more than
once.

Detailed design information for each program is provided in Paragraph D.3, Design. Process,
module, and main body names are referenced explicitly as they appear in the architecture diagrams.

“REDO LOG BACKUP”

br_back_redo Program br_back_cum Program

“CUMULATIVE BACKUP” “FULL BACKUP”

br_back_full Program

Display warning and
verify continuation”

ans_continue Module
Redisplay the main

menu

exec br_main_menu
Program Quit

Execute in
Background

Execute in
Background

Execute in
Background

DISPLAY PROCESS

EXECUTE BACKUP OPTIONS

DISPLAY PROCESS

EXECUTE RESTORE OPTIONS

“REDO LOG RESTORE”

br_restore_redo Program br_restore_cum Program

“CUMULATIVE RESTORE” “FULL RESTORE”

br_restore_full Program

DISPLAY PROCESS

EXECUTE UTILITY OPTIONS

“CHANGE AUTOMATIC
BACKUP SCHEDULE”

auto_backup_menu
Program

“DEVICE/DATABASE
SETTINGS”

show_device_config
Program

“BACKUP STATUS”

br_status Program

Figure D-5: br_main_menu Program, Part II.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-6

PROGRAM INITIALIZATION PROCESS

Main Body

Environment variable declaration
User/Lock verification

send_msg_to_term Module

Prompt user for first tape

identify_btape External Module

Tape verification

create_header Module

Write header to tape

Main Body

Copy database files to tape

Main Body

tar out optional files

create_exit_log Module

Compile the exit status report

Exit

send_msg_to_term
Module

Prompt user. Tape
not found/wrong tape

handle_error
External Module

Identify and process
errors

send_msg_to_term
Module

Prompt user for
next tape

handle_error
External Module

Identify and process
errors

TAPE VERIFICATION
PROCESS

DATABASE FILE
BACKUP PROCESS

AUXILLIARY FILE
BACKUP PROCESS

SUCCESSFUL

STATUS REPORT
PROCESS

Oracle, tar
errors

EOF
Tape

tar
error

User
Error

tar error

tar error

Terminate
with errors

Success with
warnings

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-7

Figure D-6: br_back_full Program.

PROGRAM INITIALIZATION PROCESS

Main Body

Environment variable declaration
User/Lock verification

send_msg_to_term Module

Prompt user for first tape

identify_btape External Module

Tape verification

create_header Module

Write header to tape

Main Body

Copy database files to tape

Main Body

tar out optional files

create_exit_log Module

Compile the exit status report

Exit

send_msg_to_term
Module

Prompt user. Tape
not found/wrong tape

handle_error
External Module

Identify and process
errors

send_msg_to_term
Module

Prompt user for
next tape

handle_error
External Module

Identify and process
errors

TAPE VERIFICATION
PROCESS

DATABASE FILE
BACKUP PROCESS

AUXILLIARY FILE
BACKUP PROCESS

SUCCESSFUL

STATUS REPORT
PROCESS

Oracle, tar
errors

EOF
Tape

tar
error

User
Error

tar error

tar error

Terminate
with errors

Success with
warnings

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-8

Figure D-7: br_back_cum Program.

PROGRAM INITIALIZATION PROCESS

Main Body

Environment variable declaration
User/Lock verification

send_msg_to_term Module

Prompt user for first tape

Exit

STATUS REPORT
PROCESS

TAPE
VERIFICATION

PROCESS

CONTINGENCY
PROCESS

REDO LOG
BACKUP

PROCESS

CONTINGENCY
SPACE USAGE

PROCESS

Redo Log Backup is
locked out and

archive directory is
95% full

Typical operation
>-

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-9

Figure D-8: br_back_redo Program, Part I.

identify_btape External Module

Tape Verification

create_header Module

Write header to tape

get_arch_file_list Module

Locate archived redo logs and
compile list

create_exit_log Module

Compile the exit status report

Exit

send_msg_to_term
Module

Prompt user. Tape
not found/wrong tape

handle_error
External Module

Identify and process
errors

send_msg_to_term
Module

Prompt user for
next tape

TAPE VERIFICATION
PROCESS

REDO LOG BACKUP PROCESS

Oracle, tar
errors

User
Error

tar error

Terminate
with errors

Main Body

Process redo log sequences

tar_arch_logs Module

exec_tar_process Module

Copy archived redo logs to
tape

SUCCESS

STATUS REPORT
PROCESS

EOF
Tape

Verify redo log sequence
and make preparations for

backup

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-10

Figure D-9: br_back_redo Program, Part II.

CONTINGENCY
PROCESS

find_and_move

Relocate redo logs

Exit

arch_move_logs Module

Find available contingency drives

check_free_space Module

Calculate the overall contingency
drives' disk usage

handle_error External
Module

Kill the backup in progress

create_exit_log Module

Compile the exit status report

STATUS REPORT
PROCESS

SUCCESS

CONTINGENCY
SPACE USAGE

PROCESS

Out of disk
space error

Terminate
with errors

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-11

Figure D-10: br_back_redo Program, Part III.

PROGRAM INITIALIZATION PROCESS

Main Body

Environment variable declaration
User/Lock verification

begin_restore_prompt

Prompt user for first tape, wait for input

Main Body

Disable cron, shut database
down

identify_rtape External Module

Tape verification

Main Body

Restore database files from
tape

create_exit_log External
Module

Compile the exit status report,
Display to screen, wait for input

Exit

send_msg_to_term
Module

Prompt user. Tape
not found/wrong tape

handle_error
External Module

Identify and process
errors

next_tape_prompt
Module

Prompt user for next
tape, wait for input

TAPE VERIFICATION
PROCESS

DATABASE FILE RESTORE PROCESS

SUCCESSFUL

STATUS REPORT
PROCESS

Oracle, tar
errors

EOF
Tape

User
Error

Terminate
with errors

Restart tape
verification

tar error

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-12

Figure D-11: br_restore_full Program.

PROGRAM INITIALIZATION PROCESS

Main Body

Environment variable declaration
User/Lock verification

begin_restore_prompt

Prompt user for first tape, wait for input

Main Body

Disable cron, shut database
down

identify_rtape External Module

Tape verification

Main Body

Restore database files from
tape

create_exit_log External
Module

Compile the exit status report,
Display to screen, wait for input

Exit

send_msg_to_term
Module

Prompt user. Tape
not found/wrong tape

handle_error
External Module

Identify and process
errors

next_tape_prompt
Module

Prompt user for next
tape, wait for input

TAPE VERIFICATION
PROCESS

DATABASE FILE RESTORE PROCESS

SUCCESSFUL

STATUS REPORT
PROCESS

Oracle, tar
errors

EOF
Tape

User
Error

Terminate
with errors

Re-start tape
verification

tar error

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-13

Figure D-12: br_restore_cum Program.

find_seq_log

Position tape to starting redo log

create_exit_log Module

Compile the exit status report,
Display to screen, wait for input

Ex it

send_msg_to_term
Module

Prompt user. Tape not
found/wrong tape,
starting redo log

sequence not on tape

handle_error
External Module

Identify and process
errors

PROGRAM INITIALIZATION PROCESS

Main Body

Environment variable declaration
User/Lock verification

RESTORE PREPARATIONS PROCESS

Main Body

Disable cron, shut database down, start SQL*DBA,
issue ORACLE <RECOVER> command

log_seq_prompt

Prompt user for missing starting redo log sequence

begin_restore_prompt

Prompt user for first tape, wait for input

identify_rtape External Module

Tape verification

REDO LOG
RESTORE PROCESS

REDO LOG
RELOCATION

REPORT PROCESS

SUCCESSFUL

TAPE VERIFICATION
PROCESS

EOF redo log
and starting

sequence not
found

STATUS REPORT PROCESS

Re-start tape
verification

User
Error

tar error

tar error

Terminate
with errors

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-14

Figure D-13: br_restore_redo Program, Part I.

TAPE VERIFICATION
PROCESS

space_avail

Find archived redo log directory disk
usage

extract_log

Restore single redo log from tape

Main Body

Match restored redo sequence to last
redo log sequence restored to tape

Exit

STATUS REPORT
PROCESS

conting_log_not found

Determine if contingency redo logs exist

get_arch_file_list

Search for contingency redo logs and compile

Main Body

Process contingency redo log
lists and generate report

Main Body

Start SQL*DBA, apply
restored logs via ORACLE

<RECOVER> command

rm_log_scrn

Display range of redo
log sequences to be

removed

handle_error External
Module

Identify and process errors

next_tape_prompt
Module

Prompt user for next
tape, wait for input

REDO LOG RESTORE PROCESS

SUCCESSFUL

Usage
100% =

Remove applied redo logs
from archived redo log directory

REDO LOG RELOCATION
REPORT PROCESS

SUCCESSFUL
Contingency redo

logs
not found

Terminate
with errors

Additional
redo logs
required

Last redo
log

required
from tape

Next redo
Log

Usage less than 100%

EOF
Tape

tar error

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-15

Figure D-14: br_restore_redo Program, Part II.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-16

D.3 DESIGN

The design of each backup/recovery program is described in detail in this section.
Architecture diagrams for each critical program are provided in Paragraph D.2, Architecture. Design
information is provided for maintenance of the following programs:

C Backup/recovery main menu program. This program displays the menu interface
(shown in Figure D-2) shared by the backup/restore programs.

C External error handler module. This stand-alone module performs error handling for
the backup/restore programs that follow.

C Backup Programs. These programs consist of the full, cumulative, and redo log
backup programs.

C Restore Programs. These programs consist of the full, cumulative, and redo log
restore programs.

The backup/recovery architecture and design sections logically group the major backup or
restore operations by processes within each program. A process is comprised of logical functions
and a function is comprised of main body Unix commands and/or modules. A module is a collection
of Unix commands which performs a certain task, generally more than once. For example:

C The full backup program logically consists of Program Initialization, Tape
Verification, Database File Backup, Auxiliary File Backup, and Status Report
processes. Processes are identified explicitly (i.e., Paragraph D.3.3.1, Program
Initialization Process).

C The Database File Backup Process logically consists of Identifying Database Files,
Copying Database Files to Tape, and Processing Multitape Backups functions. Each
function is performed by main body and/or module scripts. Module scripts are
identified explicitly (i.e., Paragraph D.3.3.3.2., copying database files to
tape/end_ts_backup Module).

Logical groupings are used within this document to clearly represent the function of complex
Unix scripts. They provide a valuable tool for the maintenance developer. For example, an update
may be required to the portion of the full backup code which copies files to tape. The maintenance
developer can use this document to identify the existing code within the backup process and
determine which related processes may be affected.

D.3.1 Backup/Recovery Main Menu Program — br_main_menu

The br_main_menu program displays the menu of backup, restore, and utility options. It
is designed to evaluate user input and execute appropriate backup, restore, or utility options as
requested by the user. The restore and utility options are executed in foreground and require user

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-17

interaction. The backup options are executed in background and do not require direct user
interaction. When a backup option is selected the program is executed and then immediately returns
to the main menu.

The selection of a backup option invokes the call to a display screen which forewarns the user
that a backup has been selected. The user has the option to continue or quit. This is a precautionary
measure to prevent the user from accidently running a backup program. The restore or utility options
do not incorporate the warning when selected.

The br_main_menu program is comprised of three processes:

C Program Initialization Process, Paragraph D.3.1.1
C Display Process, Paragraph D.3.1.2
C Program Execution Process, Paragraph D.3.1.3.

GENERAL ERROR HANDLING:

The br_main_menu program handles two types of error conditions, a login error, and an
environment variable error. A login error occurs when a user does not login as <oradba> and tries
to run the br_main_program. An environment variable error occurs when the ORACLE_SID,
TAPE or ORACLE_HOME variables remain null after the program tries to derive the values. The
program cannot continue if the login or environment error occurs. When the br_main_menu
program detects error conditions, it displays the appropriate error message, waits for user response,
and exits.

D.3.1.1 Program Initialization Process. The program initialization process declares and exports
environment variables for the restore and utility programs. The backup programs have the declaration
and export functions built into each program. This is required because the backup uses the cron
facility which uses only environment variables declared in the program. The program initialization
process performs preliminary checking. (See Program Initialization Process for details, Paragraph
D.3.3.1).

D.3.1.2 Display Process. The Display process creates a standard menu on the screen and prompts
the user for input.

D.3.1.3 Program Execution Process. The program execution process maps the following variable
to the following command lines:

C F <nohup /backup/full/br_back_full &>
C C <nohup /backup/cum/br_back_cum &>
C R <nohup /backup/redo_log/br_back_redo &>
C RF </restore/full/br_restore_full>
C RC </restore/cum/br_restore_cum>
C RR </restore/redo_log/br_restore_redo>

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-18

C A </etc/auto_sched_menu>
C B </etc/br_status>
C D </etc/show_device_config>

D.3.2 External Error Handler Module — handle_error

The handle_error module is designed to perform central error processing for both the
backup and restore programs. The purpose for the design is to make the updates, additions, or
deletions of error messages an easier task. If a new error condition needs to be handled, append the
condition and message to the handle_error module and then place the handle_error call with the
proper arguments in main program.

ARGUMENTS:

C First Argument Identifies the type of error.

C Second Argument The directory path of the application with the error
condition. It is used to find the error.log and
current_progress file.

C Third Argument The application name in which the error occurred.
This will be used as part of the error message.

C Additional Arguments Used to further process the error condition.

The handle_error module evaluates the first argument from the calling program and writes
the appropriate message to both the error.log and current_progress files and then returns. It
implements a large case statement. Table D-1 maps the error argument to the description and calling
program(s).

Table D-1: External Error Handler Module — handle_error Arguments.

ERROR ARGUMENT DESCRIPTION CALLING PROGRAM(S)

LOCK_ERROR br_back_fullA backup is in progress.
br_back_cum
br_back_redo
br_restore_full
br_restore_cum
br_restore_redo

IO_ERROR br_back_fullFatal error while trying to create a file.
br_back_cum
br_back_redo

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

ERROR ARGUMENT DESCRIPTION CALLING PROGRAM(S)

Delivery Order Number 70 31 March 1997D-19

ORACLE br_back_fullGeneral ORACLE error.
br_back_cum
br_back_redo
br_restore_full
br_restore_cum
br_restore_redo

ORACLE2 br_back_fullORACLE error pertaining to the online backup
process. br_back_cum

ORACLE3 br_back_fullORACLE error pertaining to backing up of the
control file. br_back_cum

NON_TERM_ERROR br_back_fullUnix errors occurring as a result of backing up
optional files. br_back_cum

LOGIN_ERROR br_back_fullAn attempt was made to perform a backup,
restore, or utility option by a user not logged in as
unix user <oradba>. br_back_redo

br_back_cum

br_restore_full
br_restore_cum
br_restore_redo

TAR Fatal tar or tape drive error. br_back_full
br_back_cum
br_back_redo
br_restore_full
br_restore_cum
br_restore_redo

OUT_OF_SPACE br_back_redo program is locked out and the br_back_redo
contingency drive is out of space.

SEQ_NOT_FOUND br_back_redoThe current log sequence could not be obtained
from the database.

VFILESTAT_ERR A reliable vfilestat file could not be created. br_back_full
br_back_cum

TIMED_OUT br_back_fullThe appropriate backup tape was not inserted.
System timed out after approximately three hours. br_back_cum

br_back_redo

HOME_NOT_FOUND The dbhome command was not found or it could br_back_full
not return the ORACLE home directory. br_back_cum

br_back_redo

DEV_NOT_FOUND br_back_fullA tape device was not defined in the
DEFAULT_TAPE file. This value is assigned br_back_cum
to the TAPE environment variable. br_back_redo

D.3.3 Full Backup Program— br_back_full

The br_back_full program performs an online full database backup. All datafiles of each
tablespace are backed up while the database is available for updates and all normal operations. The

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-20

commands and modules which comprise the full backup program are grouped together to form the
following processes:

C Program Initialization Process. Handles program execution/termination, user/pro-
gram interaction, and preliminary checking.

C Tape Verification Process. Performs identification of full backup tapes, enforces the
correct type of tape, and the correct sequence (FULL_1, FULL_2, etc.).

C Database File Backup Process. Locates the name of each tablespace and its
corresponding database files from the DBA_DATA_FILES table and copies those
files to tape.

C Auxiliary File Backup Process. Copies the backup control and DB structure export
file to tape and spools out database file Input/Output (I/O) information from the
V$FILESTAT table. The I/O information is a snapshot of the number of blocks
written to each tablespace file and is used in conjunction with the cumulative backup
program. br_back_cum uses the snapshot to determine which tablespaces have been
modified since the last full backup.

C Status Report Process. Compiles and prints a backup summary log which contains
the backup status (successful, successful with warnings or terminated with the error
message). Also, if the program was successful, it contains the database files copied
to tape grouped by tablespace name. The file is printed out at the end of the backup
so the user can place the printout in the backup binder.

INPUT TABLES:

C SYS.DBA_DATA_FILES. Provides the tablespace names and database file names.

C SYS.V$FILESTAT. Provides the number of physical blocks written to each
tablespace.

OUTPUT FILES:

C vfilestat — contains the spooled out V$FILESTAT information.

C current_progress — gives the user the ability to check the progress of the program.
The file contains messages which describe all program events which processed at the
time the file current_progress was called. The current_progress will also contain
any program errors.

C exit_status — is a copy of the status report which contains the status of the program
(successful, successful with warnings, or terminated with the error message) and the
database files copied to tape grouped by tablespace name.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-21

C error.log — is an accumulation of all error messages.

C control.bak — is the backup of the ORACLE control file.

TEMPORARY FILES:

C /tmp/spooled — raw output from the SYS.DBA_DATA_FILES table.

C /tmp/input — contains the tablespace names and database file names derived from
the spooled file. This file is the main driver of the program.

C /tmp/error_flag$$ — this file holds any ORACLE errors that are processed by the
error handler.

C /tmp/LK_BACKUP_FULL$$ — created when the program first starts and locks
out any other backup or restore program from executing. The file is removed when
the program terminates via the trap command and is also remove from the /tmp
directory automatically if the system is rebooted.

C /tmp/TABLESPACE_NAME (e.g., /tmp/CARRIER) — contains the database
file(s) which makes up a particular tablespace. Each tablespace selected for backup
will have a corresponding TABLESPACE_NAME file created. For instance,
CARRIER tablespace will have a file named CARRIER containing
/oracle1/carrier1.dbf and so on.

GENERAL ERROR HANDLING:

All routine errors are trapped by the handle_error external module including write/permission
errors, lock errors (another backup/restore program is currently running), tar I/O errors, and login
errors. Refer to Paragraph D.3.2, External Error Handle Module — handle_error, for more details.

When any of the above errors occur the program writes the appropriate error message to the
error_log, current_status, and exit_status files, then the error message is mailed to the <oradba>
user account.

If an error occurs while backing up the control file or while the V$FILESTAT table is being
accessed, the program will terminate successfully with a warning. As this warning implies, there is
no need to start over because all the files are already (successfully) backed up to tape.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-22

D.3.3.1 Program Initialization Process. The program initialization process is designed to perform
the following functions:

C Program Execution, Paragraph D.3.3.1.1
C Program Termination, Paragraph D.3.3.1.2
C Monitoring Current Status, Paragraph D.3.3.1.3
C User Prompting/send_msg_to_term Module, Paragraph D.3.3.1.4
C Environment Variable Declaration, Paragraph D.3.3.1.5
C Preliminary Checking, Paragraph D.3.3.1.6
C Exit Handling, Paragraph D.3.3.1.7.

D.3.3.1.1 Program Execution. The program execution function provides the users with two
mechanisms for starting the full backup:

C BACKUP AND RECOVERY MENU screen
C cron file (via AUTO BACKUP MENU screen).

Both the menu option and cron file execute the backup programs in background. The menu
option places the program in background by using the nohup command in conjunction with the &.
As a result the user has immediate control of the terminal after the backup option is selected and can
then log off the terminal or continue working with no affect on the backup program.

The cron file automates the backup process by allowing the user to schedule backups. By
default the cron file executes the backup program in background.

D.3.3.1.2 Program Termination. The termination function gives the user the ability to stop the full
backup at any time. Program termination is initiated via the TERMINATE FULL BACKUP option
from the BACKUP STATUS MENU screen.

D.3.3.1.3 Monitoring Current Status. The function of monitoring the backup status provides the
user with an interface to view the history of backup activities. An interface is required because the
backup program is a separate process running in background. The backup status is determined by
the contents of the current_progress file. The current_progress file contains a history of backup
activities including user prompts and any errors messages. The backup program appends entries into
the current_progress file describing each stage of the full backup process. The user monitors the
backup progress by reading the current_progress file via the BACKUP STATUS option from the
BACKUP AND RECOVERY MENU screen. The current status will include all activities up to the
point in time that the BACKUP STATUS option was selected. In order to view the status of
continuing activities the user must exit the backup status display screen and reselect the FULL
BACKUP STATUS option.

D.3.3.1.4 User Prompting/send_msg_to_term Module. The user prompting function is designed
to communicate a request for a certain user action to take place before the program can continue.
The message prompts must accommodate the application running as a background process. The
backup program is incapable of suspending the current backup activity (in order to prompt the user

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-23

and wait for a response) because it cannot receive input from a keyboard. The message handling
capability is accomplished by sending automated message prompts to the console and to all other
terminals where <oradba> or <secman> users are logged in. The application senses a correct user
response by monitoring the tape drive status. A loop construct is used to display messages and
monitor tape drive activity.

Screen message handling is accomplished via the send_msg_to_term module. The module
simply sends the last four lines in the current_progress file to console then to each user logged in
as the unix user <oradba> or <secman>. Before the send_msg_term_module is called, the backup
program writes the message to the current_progress files.

MESSAGE DESCRIPTIONS:

C The backup has just started and reminds user with the following messages:

"Please make sure that the FULL BACKUP tape FULL_1 is in place."

C If the backup is in progress and requires an additional tape to continue, the following
message will be displayed:

"PLEASE REMOVE THE TAPE AND INSERT NEXT FULL BACKUP
TAPE: FULL_2."

C If the program has identified an invalid tape, then the following messages are
displayed:

"The Full Backup cannot continue !!!!."

"Please insert the FULL_1 tape, a new tape, or an erased tape."

C If the user forgot to put the tape in the drive or specified the wrong tape device, the
following message is displayed:

 "THE FULL_1 TAPE IS NOT LOADED OR THE TAPE DRIVE IS OFFLINE
!!!."
"Please insert the tape labeled FULL_1 or confirm that the device driver is
installed properly."

D.3.3.1.5 Environment Variable Declaration. A critical design issue involves deriving values for
the TAPE and ORACLE_SID environment variables and printout destination variables from a source
outside of the br_back_full program. This provides the means to implement user configurable
environment variables. In addition, it also prevents the bad practice of hard coding the values into
the application code. The TAPE and ORACLE_SID variables are essential to the backup process
while the printout destination variable PRINTER is optional.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-24

The ORACLE_SID, DEFAULT_TAPE, and PRINTER values are each stored in a separate
file under $ORACLE_HOME/RECOVERY/etc. The application, during program initialization,
determines the path and assigns the values which are then exported. Variable settings are provided
in Table D-2.
.

Table D-2: Environment Variable Declaration Settings.

SETTING SOURCE FILE AT VARIABLE
$ORACLE_HOME/RECOVERY/etc

REQUIRED SETTINGS:

Database Name ORACLE_SID ORACLE_SID

Default mt, tar device DEFAULT_TAPE TAPE

OPTIONAL SETTINGS:

Full backup/restore device FULL_TAPE FULL_TAPE

Redo backup/restore device REDO_TAPE REDO_TAPE

Cumulative backup/restore device CUM_TAPE CUM_TAPE

Alternate print destination PRINTER PRINTER

D.3.3.1.6 Preliminary Checking. The preliminary checking function is designed to test for certain
program initialization conditions and will not allow the backup process to continue if they exist. The
following program initialization conditions are checked:

C Not logged in as <oradba> The program cannot write output files or
perform any SQL*DBA functions.

C A backup lock is found Program cannot start if another backup or
restore program is currently in progress.

C ORACLE_SID or TAPE The program cannot perform any SQL*DBA
“is null” functions or cannot use any mt or tar
commands.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-25

D.3.3.1.7 Exit Handling. The exit handling function is designed to handle three types of exits. The
first type is controlled by the program flow. The second type occurs as a result of a system failure,
and the third type of exit is initiated by the user via the TERMINATE FULL BACKUP option from
the BACKUP STATUS MENU.

In all of the above exit modes, the exit handling function is responsible for removing lock and
temporary files. When a fatal system/program error occurs, the exit handler performs the additional
function of ending the tablespace backup. The additional function is needed to insure that the
program does not exit with a tablespace altered to begin backup.

The exit mode functionality is accomplished through two Unix trap commands. The first trap
command is triggered by an exit signal 0 and performs the cleanup functions. The second trap
command is triggered by an emergency exit which is characterized by the following signals:

Table D-3: Full Backup Program Emergency Exits.

SIGNAL MEANING AND TYPICAL USE

1 Hangup — stop running. Sent when a user runs the terminate full backup program.

2 Interrupt — stop running. Sent when a user types: <KEYBOARD()>.

5 Quit — stop running. Sent when a user types: <>.

9 Kill — stop immediately. Emergency use.

15 Optional signal which can be used to terminate cleanly if possible.

The second trap calls the end_ts_backup module which ends the tablespace backup. For
details on end_ts_backup see Copying Database Files to Tape (Paragraph D.3.3.3.2). It is important
to note that the first trap will always run and is not dependent on the second trap being triggered.

D.3.3.2 Tape Verification Process. The tape verification process is designed to execute a series
of tape identification operations when a full backup tape is placed in the drive preventing the user
from accidently overwriting a cumulative or redo log tape or some other tape. It keeps track of the
correct tape sequence (FULL_1, FULL_2) and will not overwrite a FULL_1 tape when the
FULL_2 tape is required. The identify tape routines are incorporated into the identify_btape
external module.

D.3.3.2.1 identify_btape — External Module. identify_btape is called from the full and
cumulative backup programs when the first tape is inserted and for each subsequent tape required to
complete the backup. It verifies the state of the tape drive (e.g., checks if a tape inserted) and the
FULL_n or CUM_n tape type, and prompts the user for a particular action if a verification fails.
identify_btape is self contained and performs the same function for both the full and cumulative
backups.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-26

ARGUMENTS:

C First Argument CUM_$TAPE_CNT/FULL_$TAPE_CNT — The type of
backup (full or cumulative) and current sequence (1..N).
Compares this parameter with name of the first file on tape to
determine if they are the same.

C Second Argument Program Initialization Directory Path — Directory where the
br_back_full or br_back_cum resides. The path is used to
locate the current_progress file when writing the status
messages.

C Third Argument Application Name — The application name "Full Backup" or
"Cumulative Backup" used in the status and error messages.

RETURNED EXIT STATUS:

0 Tape verification was successful: a tar read error was encountered indicating
a new tape. In both cases the created_header module is called.

1 Tape verification was unsuccessful: This could result because a redo log
backup tape or other tape was in the tape drive. It will also result from a tar
error because the tape drive was busy or because the verification process has
timed out after approximately three hours.

identify_btape is called from the main program body as part of the if command conditional
expression. This allows the calling program to test the returned exit status. It uses the returned exit
status to determine that the correct tape header was found. If identify_btape returns a 0, then it
found the correct tape. If it returns a nonzero, identify_btape encountered an error and the calling
program initiates the error exit routines. identify_btape is driven by an unconditional while loop
construct. It will break out of the loop if it finds the correct header, encounters an error, or is timed
out (approximately three hours) without finding the correct tape. When a user action is required, the
message prompts are repeated at set intervals of 60 seconds. An example of this condition would be
insertion of the wrong tape; the backup cannot continue until the FULL_1 tape is inserted. The
messages repeat until the required action is completed or a maximum time interval of approximately
three hours is met. For a detailed description of messages see User Prompting/send_msg_to_term
Module, Paragraph D.3.3.1.4.

The module identifies the tape under three categories: 1) rewinding/no tape inserted; 2) at
the beginning; or 3) not positioned at the beginning of the tape. It handles each category differently.

C Rewinding/no tape inserted — creates an offline message: wait and try again.

C At the beginning of the tape — reads the first file and identifies it as a FULL or CUM
header. If the tape is identified, rewind to the beginning then return. If it cannot be

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-27

identified, then it displays the appropriate message and continues looping. If a tar
error is encountered, then it returns and tries to create the header in case it is a new
tape.

C Not positioned at the beginning of the tape — checks to see if the device is busy. If
it is, then it handles the error and returns an error exit status. If the device is not busy,
it rewinds the tape and restarts the verification operation.

D.3.3.2.2 create_header Module. The create_header module creates a new header on a blank tape
or overwrites the old header with a new one. The newly created header file is used by the verification
process. The header file (FULL_N) is overwritten because the date information in the header file is
updated each time a header is required on tape.

The create_header module is called after the identify_btape returns a successful exit status.
It creates a file FULL_1..N in the runtime directory containing the current date. The module then
copies the file to tape. The same error handling applies as described in Paragraph D.3.3.3.2, Copying
Database Files to Tape/end_ts_backup Module

D.3.3.3 Database File Backup Process. The backup process is comprised of the following
functions:

C Identifying Database Files, Paragraph D.3.3.3.1
C Copying Database Files to Tape/end_ts_backup Module, Paragraph D.3.3.3.2
C Processing Multitape Backups, Paragraph D.3.3.3.3.

D.3.3.3.1 Identifying Database Files. This function performs the task of identifying all available
database files and their tablespace counterparts. The list of database files and tablespaces are derived
from the DBA_DATA_FILES table. The DBA_DATA_FILES table is a data dictionary view and
provides a built in source for finding the current database files.

The tablespace name and database files selected from the DBA_DATA_FILES have a two-
fold purpose:

C Supply the backup process with a file containing an entry for each database file along
with the corresponding tablespace.

C Provide the backup process with a file containing all the tablespaces and database files
which will act as a look-up table so the program can find the database files associated
with a tablespace.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-28

ORACLE procedures — Identify Database Files

The set of commands which make up the identifying function are part of the main body of the
br_back_full script. The procedures to identify the database files are accomplished using ORACLE
and Unix commands and are as follows:

C SQL*DBA — Query DBA_DATA_FILES Table Data

Select the tablespace_name and file_name along with an OK_ROW constant and redirect
the standard output to /tmp/spool. The OK_ROW identifies the legitimate rows so they can
be removed later.

C Error Handling— ORACLE (Type— Terminating)

If an attempt to query the DBA_DATA_FILES table results in errors, they will be redirected
to the /tmp/spooled file and identified. The /tmp/spooled file is then passed as an argument
to the error handler and processed.

D.3.3.3.2 Copying Database Files to Tape/end_ts_backup Module. The copying database files
to tape function is designed to accommodate online serial database backups. Online backups require
that each tablespace must be altered to begin backup before the datafiles can be copied to tape. In
addition, the tablespaces must also be altered to mark the end of the tablespace backup after the files
are backed up. This process must be performed for each tablespace until all the database files are
copied to tape. A tablespace iterator is used to identify and prepare tablespace and database file
information so it can be used in the tar command in a sequential manner.

The set of commands which compose the copying function are part of the main body of the
br_back_full script. The process of copying the database files to tape can be divided into the
following two stages:

C Determine the tablespaces designated for backup and assign to an iteration variable.

- Implementation is as follows:

For 1 to N iterations

$TABLESPACES -------------> TSNAME variable

- Extract unique tablespace names and assign to the iteration variable:

/tmp/input -------> TABLESPACES variable

C Process each tablespace as per the tablespace iterator as follows:

- Prepare the ORACLE tablespace for backup.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-29

- Group the database file names and locations by tablespace and store that
information to a file.

- tar those database files to tape using the file with a -I option so the tar
command can locate the those files.

- Signal the end of the ORACLE tablespace backup.

The end_ts_backup module contains the SQL*DBA commands to mark the end of each
tablespace backup. The commands are grouped into a module because it is used in several places
throughout the application.

Error Handling — ORACLE

The output of the SQL*DBA command is filtered for any occurrences of ORACLE error
messages and redirected to a temporary error_flag file. Interpretation of the error_flag file
is as follows:

Empty — SQL*DBA command was successful.

Not empty — An ORACLE error occurred. The error_flag is passed to the error handler
and processed.

Error Handling — tar

The standard error from the tar command is redirected to a variable. Interpretation of the
standard error variable is as follows:

Null — tar command was successful.

Not Null/Terminating — If the value does not match "blocksize = 0" or "unexpected End of
File (EOF)" then tar was not successful. Pass the standard error variable to the error handler.

Not Null/Tape Control — If the value matches "blocksize = 0" or "unexpected EOF", then
the end of recordable media has been reached. The backup process requires an additional
tape in sequence to continue. The tape sequence is incremented and the backup process
continues. For detailed design information see Processing Multitape Backups, Paragraph
D.3.3.3.3.

D.3.3.3.3 Processing Multitape Backups. This function is designed to automatically handle
multitape backups. A multitape backup occurs when additional tapes are required to complete the
backup process. When the end of tape occurs the process must be temporarily suspended to allow
the user to insert the next tape. Each additional tape is verified via the tape verification process.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-30

An additional tape is required when tar returns "blocksize = 0" or "unexpected EOF" which
indicates that the end of recordable media has been reached. The function responds by incrementing
the tape counter and calling identify_btape external module with the incremented tape name, e.g.,
FULL_2. When the correct tape is verified, the new header is copied to tape via the create_header
module. The backup process begins with the file it was copying to tape when the additional tape was
required.

D.3.3.4 Auxiliary File Backup Process. The postbackup process performs additional backup
functions after the database files are copied to tape. It spools the V$FILESTAT table information
to the vfilestat file and backs up the ORACLE control, init.ora file, and database structure. The
V$FILESTAT information is the current number of blocks written to each tablespace file. The
cumulative program uses this information to determine which tablespaces have been modified since
the last full backup. The backup control file, init.ora file, and exported database structure are copied
to tape. Also, the program marks the tape with a special “end of backup” EOB file. The EOB file
allows the restore program to identify the last tape so it can automatically exit.

The backup control and Database structure export file were extracted from the database via
the ALTER DATABASE and exp commands. The auxiliary files are bundled and copied to tape. The
program spools out database file I/O information from the V$FILESTAT table to a vfilestat file.

Error Handling — ORACLE

If an attempt to query the V$FILESTAT table results in errors, the errors will be redirected
to the vfilestat file and identified. The vfilestat file is then passed as an argument to the error
handler and processed.

Error Handling — tar

See Paragraph D.3.3.3.2, Copying Database Files to Tape, for error handling details.

D.3.3.5 Status Report Process/create_exit_log Module. The status report process provides the
user an overall backup summary. If the status is successful or successful with warnings, then the
report will contain the database files copied to tape grouped by tablespace name. A terminated status
report will include the errors that caused the interruption of the backup program. The status report
is sent to the printer. In the case of a terminated error the status report is also mailed to the
<oradba> and <secman> users.

This module is called from the main program if any critical stage of the backup encounters
a fatal error and cannot continue or if the program completes the backup successfully. This module
evaluates the input arguments and determines the status. This module categorizes the backup status
into three possibilities:

C SUCCESSFUL - Backup and Postbackup process completed. All database and
auxiliary files were copied to tape.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-31

C SUCCESSFUL - Backup process completed. Postbackup process encountered
WITH an ORACLE or tar terminal error. All database files were WARNINGS
copied to tape so it is not necessary to repeat backup.

C TERMINATED - Tape verification or Backup process encountered a fatal ORACLE,
tar, or Unix error. The backup must be repeated.

INPUT ARGUMENTS:

C First Argument Indicates main status category (success or terminated).

C Second Argument Further defines the success status as completing with a no
warning or warning status.

D.3.4 Cumulative Backup — br_back_cum. br_back_cum performs an online cumulative
database backup of all tablespaces in which updates, inserts, or deletes were applied since the last full
backup. The recovery of all database files will require only the full and most recent cumulative tape.
This will minimize down time. All datafiles of each tablespace are backed up while the database is
in use for normal operation. The commands and modules which comprise the cumulative backup
program are grouped together to form the following processes:

C Program Initialization Process — handles program execution/termination,
user/program interaction and preliminary checking. For details see Paragraph
D.3.3.1, Program Initialization Process.

C Tape Verification Process — performs identification of cumulative backup tapes and
enforces the correct type of tape and the correct sequence (CUM_1, CUM_2, etc.).
For details see Paragraph D.3.3.2, Tape Verification Process.

C Database File Backup Process — determines which tablespaces have changed and
locates the name of each tablespace and its corresponding database files from the
DBA_DATA_FILES table and copies those files to tape. For details see Paragraph
D.3.3.3, Database File Backup Process.

C Auxiliary File Backup Process — copies the backup control init.ora and Database
structure export files to tape. For details see Paragraph D.3.3.4, Auxiliary File
Backup Process.

C Status Report Process — compiles and prints a backup summary log which contains
the backup status (successful, successful with warnings, and terminated with the error
message). Also, if the program was successful it contains the database files copied
to tape grouped by tablespace name. The file is printed out at the end of the backup
so the user can place the printout in the backup binder. For details see Paragraph
D.3.3.5, Status Report Process.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-32

INPUT TABLES:

C SYS.DBA_DATA_FILES — provides the tablespace names and database file names.

C SYS.V$FILESTAT — provides number of physical blocks written to each
tablespace file.

OUTPUT FILES:

C vfilestat (current and since last full backup) — contains the spooled out
V$FILESTAT information.

C current_progress — gives the user the ability to check the progress of the program.
The file contains messages which describe all program events taken place so far. The
current_progress will also contain any program errors.

C exit_status — gives the user a backup summary log which contains the status of the
program (successful, successful with warnings, terminated with error message). Also,
if the program was successful it contains the files copied to tape grouped by
tablespace name. The file is printed out at the end of the backup so the user can place
the printout in the backup binder.

C error.log — an accumulation of all error messages.

TEMPORARY FILES:

C /tmp/spooled — output from the SYS.DBA_DATA_FILES table.

C /tmp/ts_list — contains the tablespace names and database file names which are
derived from the spooled file. This file is the main driver of the program.

C /tmp/error_flag$$ — this file holds any ORACLE errors which are processed by the
error handler.

C /tmp/LK_BACKUP_CUM$$ — created when the program first starts and locks out
any other instances of the backup or restore program from running simultaneously.

C /tmp/TABLESPACE_NAME (e.g., /tmp/CARRIER) — contains all database files
that make up the tablespace. For each tablespace to be backed up, one
TABLESPACE_NAME file is created. For instance, CARRIER tablespace will
have a file named CARRIER which contains /home10/sm1/carrier1.dbf.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-33

C /tmp/inclause — contains tablespace names used in the where clause for selecting
data from the DBA_DATA_FILES table.

GENERAL ERROR HANDLING:

All routine errors are trapped by the handle_error external module, including
write/permission errors, lock errors (another backup/restore program is currently running), tar I/O
errors, and login errors. Refer to Paragraph D.3.2, External Error Handler Module — handle_error,
for more details.

When any of the above errors occur, the program writes the appropriate error message to the
error_log, current_status, and exit_status files, then the error message is mailed to the <oradba>
and <secman> user accounts.

Most of the errors will result in the unrecoverable termination of the program. If an error
occurs while backing up the control file or while the V$FILESTAT table is being accessed the
program will terminate successfully with a warning. At this point, there is no need to restart the
backup because all the files are already backed up to tape.

D.3.4.1 Database File Backup Process. The backup process is comprised of following functions:

C Finding Changed Tablespaces, Paragraph D.3.4.1.1
C Identifying Database Files, Paragraph D.3.4.1.2
C Copying Database Files to Tape, Paragraph D.3.4.1.3
C Processing Multitape Backups, Paragraph D.3.4.1.4.

D.3.4.1.1 Finding Changed Tablespaces. The set of commands which make up this function are
part of the main body of the br_back_cum script. The br_back_cum program uses the
V$FILESTAT information from the full backup and the recently spooled V$FILESTAT information
from the cumulative backup. The V$FILESTAT information contains the number of blocks written
to each database file. The number of blocks written to each database file at the time of the full
backup are compared with the current number of block writes. The tablespaces are selected for
backup if the number of block writes have changed since the last full backup. The V$FILESTAT
information for the full backup is spooled to $ORACLE_HOME/RECOVERY/
backup/full/vfilestat and cumulative backup is spooled to $ORACLE_HOME/RECOVERY/
backup/cum/vfilestat.

If the program cannot determine the tablespace I/O activity since the last full backup, (e.g.,
cannot find a full backup vfilestat file) it performs a full backup. The program backs up each
tablespace sequentially by using the ORACLE BEGIN BACKUP and END BACKUP commands
before and after it copies the tablespace files to tape.

If no database files have changed since the last full backup, the program will indicate that no
changes to the database have occurred since the last backup.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-34

The br_back_cum program performs a diff on those vfilestat files and extracts the tablespace
name and number of blocks written. The output of the diff command is the main driver of the
program. The output is processed and provides a list of tablespaces slated for backup. The program
then places the tablespace list in a where clause in order to get the tablespace file names from the
DBA_DATA_FILES table. br_back_cum generates a list of files from the information extracted
from the DBA_DATA_FILES table. Each file is named after a tablespace and contains the
tablespace database file name and path. The generated files are used in the tar command as part of
the -I option. As each file which identifies the tablespace and database files is generated,
br_back_full prepares the tablespace, copies the database files to tape, then moves to the next
tablespace.

D.3.4.1.2 Identifying Database Files. Same function as the full backup. For details see Paragraph
D.3.3.3.1, Identifying Database Files.

D.3.4.1.3 Copying Database Files to Tape. Same function as the full backup. For details see
Paragraph D.3.3.3.2, Copying Database Files to Tape/end_ts_backup Module.

D.3.4.1.4 Processing Multitape Backups. Same function as the full backup. For details see
Paragraph D.3.3.3.3, Processing Multitape Backups.

D.3.5 Redo Log Backup Program — br_back_redo

The br_back_redo program maintains the offline archive storage area by preventing the
archive storage area from becoming full. The archive storage area is critical to the operation of
ORACLE. When ORACLE can no longer archive the online redo log files, it stops all access to the
database, until the excess redo log files are deleted.

br_back_redo is designed to keep the archive storage area clear by monitoring the archive
directory storage capacity and moving the excess redo logs to tape or to designated contingency
drives. Under normal circumstances br_back_redo will move the archived redo logs to tape
automatically when archive disk usage is greater than or equal to 50 percent. If br_back_redo is
locked out by another backup program and archive disk usage is greater than or equal to 95 percent,
it will move the redo logs to contingency drives. The commands and modules which comprise the
redo log backup program are grouped together to form the following processes:

C Program Initialization Process — handles program execution/termination,
user/program interaction, and preliminary checking.

C Tape Verification Process — performs identification of the redo log tape and verifies
the beginning redo log sequence number on tape. It enforces the type of tape and
makes sure that the same tape is used for successive redo log backup until the tape
is full. This is critical because the numerical order of redo logs on tape cannot be out
of sync.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-35

C Redo Log Backup Process — locates any redo logs residing in the archive default and
contingency directories. The backup function then copies the redo logs to tape and
removes them from the archive and contingency directories.

C Contingency Process — locates all contingency file systems and first qualifies
available file systems by determining if there is enough free space to store 10 redo log
files. The contingency function sorts available file systems by most available free
space then relocates the redo log files to these contingency areas. The process
continues until the disk usage of the archive redo log file system is reduced to less
than 50 percent, or all contingency file systems are processed.

C Contingency Space Usage Process — checks the combined average disk usage of all
ORACLE contingency file systems. This function is performed after all contingency
file systems are processed. If the average contingency disk usage is greater than or
equal to 95 percent, then the full or cumulative backup program preventing
br_back_redo from running is killed and the appropriate messages are sent.

C Status Report Process — compiles and prints a backup summary log which contains
the backup status and also lists the ranges of redo log sequence numbers copied to
tape and the starting redo log sequence of the first redo log stored on tape. The file
is printed out at the end of the backup so the user can place the printout in the backup
binder. The starting sequence redo log number helps the user to determine which tape
is required to restore the proper redo log files.

INPUT FROM ORACLE:

ARCHIVE LOG LIST command (optional) — provides the ORACLE default archive path.
The archive path is written to a file which makes the ARCHIVE LOG LIST command
optional. If ORACLE crashes, the br_back_redo program can still function by retrieving the
archive path from the backup file.

OUTPUT FILES:

C archive_dest — is accessed if ORACLE is unavailable and provides the archive log
path.

C last_seq_num — contains the last sequence redo log number copied to tape. It is
used to verify the starting redo log file. If the program finds any redo logs with
sequence numbers less than the last_seq_num, then those redo log files will not be
included in the tar list.

C REDO_LOG — header file containing the date and the starting redo log sequence
number on tape. The header file is used to identify the type tape. The starting redo
log sequence number is used during the restoration process. If the sequence redo log

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-36

number that ORACLE requests is less than the starting redo log sequence number on
tape, then it is the wrong tape.

C current_progress — gives the user the ability to check the progress of the program.
The file contains messages which describe all program events which have been
completed. The current_progress will also contain any program errors.

C exit_status — gives the user a backup summary log which contains the exit status of
the program (successful, successful but encountered errors, and terminated with the
error message). In addition, if the program was successful, it contains the range of
redo log sequence numbers moved to tape and the ranges of redo log sequences that
were out of order. The exit_status produces a printout of the above information and
the user can place the printout in the backup binder.

C error.log — is an accumulation of all error messages.

TEMPORARY FILES:

C /tmp/br_err_msg — all error messages are initially written to this file which is then
output to the current_progress and exit_status file.

C /tmp/LK_BACK_REDO$$ — locks out any other instance of the backup or restore
program.

GENERAL ERROR HANDLING:

All routine errors are trapped by the handle_error external module including write/permission
errors, lock errors (another backup/restore program is currently running), tar I/O errors, and login
errors. Refer to Paragraph D.3.2, External Error Handler Module handle_error, for more details.

When any of the above errors occur the program writes the appropriate error message to the
error_log, current_status, and exit_status files. All error messages (with the exception of lock
error messages) are mailed to the <oradba> and <secman> user accounts.

A detailed description is provided in the following paragraphs.

D.3.5.1 Program Initialization Process. The program initialization process is comprised of the
following functions:

C Program Execution, Paragraph D.3.5.1.1
C Program Termination, Paragraph D.3.5.1.2
C Monitoring Current Status, Paragraph D.3.5.1.3
C User Prompting, Paragraph D.3.5.1.4
C Environment Variable Declaration, Paragraph D.3.5.1.5

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-37

C Runtime Variable Declaration, Paragraph D.3.5.1.6
C Preliminary Checking, Paragraph D.3.5.1.7
C Exit Handling, Paragraph D.3.5.1.8.

D.3.5.1.1 Program Execution. The modes of execution include the BACKUP AND RECOVERY
MENU and the cron batch processing facility. The br_back redo program works most effectively,
when executed from crontab, because it is designed to monitor and move redo logs with no
interaction from the user, other than insertion of the correct tape. The program runs as a background
process regardless of the execution mode. By default, the cron facility executes the backup programs
in background. In the menu execution mode the nohup command, in conjunction with the &
background operator, places the menu selected program in background which gives the user
immediate control of the terminal. As a result, the user can then log off the terminal or continue
working with no affect on the backup process.

Processing steps are dependent on the source of initiation:

C Initiated from cron: It moves offline redo log files to tape automatically. The
program checks the disk usage at every interval of time as set in the <oradba> user
crontab file. When the archived redo log storage area becomes greater than or equal
to 50 percent full, all archived redo log files are copied to tape and removed from the
hard drive.

C Initiated manually from BACKUP: It moves all archived redo log files to tape when
the BACKUP AND RECOVERY menu option is selected, regardless of the space
used in the archived redo log storage area.

The br_redo_back program can determine if it is initiated from cron or the menu by the
argument used at the command line (br_back_redo CRON or br_back_redo MENU).

When no other backups are currently in progress, the br_back_redo program performs the
typical operations of moving the excess redo logs to tape. When br_back_full or br_back_cum
locks out the br_back_redo program, and archived redo log disk usage is greater than or equal to
95 percent, the br_back_redo program performs the concurrent operation of moving the excess redo
logs to contingency redo log drives.

D.3.5.1.2 Program Termination. The termination option gives the user the ability to stop the full
backup at any time. Program termination is initiated via the TERMINATE FULL BACKUP option
from the BACKUP STATUS MENU.

D.3.5.1.3 Monitoring Current Status . The monitoring function and implementation is the same
as in the full backup program. For details see Paragraph D.3.3.1.3, Monitoring Current Status.

D.3.5.1.4 User Prompting. The redo log backup implementation of sending messages to screen is
similar to the full backup implementation, except the REDO_LOG tape label is used instead of the

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-38

FULL_1 tape label. For details see Paragraph D.3.3.1.4, User Prompting/send_msg_to_term
Module.

D.3.5.1.5 Environment Variable Declaration. The full and redo log backup implementation of
the environment variable declaration function are similar. For Environment Variable Declaration
implementation details see Paragraph D.3.3.1.5.

D.3.5.1.6 Runtime Variable Declaration. The redo log backup program requires certain ORACLE
and Unix information before it can perform a backup. br_back_redo assigns this information to
runtime variables at the beginning of the program.

The values are derived from the ARCHIVE LOG LIST, ORACLE and Unix system
commands. The various runtime variables are described below:

ARCHIVE_PATH Contains the full redo log archive directory path. Used to determine
the location of the archive redo logs within the default archive
directory.

ARCH_FORMAT Contains the name of the redo log files without the sequence number
or file extension (e.g., GCCS_1234.log -> GCCS). Used as a format
filter when searching the contingency drives to distinguish archive
redo log files from other types of files.

MOUNT_POINT Contains the first level of the archive directory path (e.g.
/oracle/smback/arch/GCCS— > /oracle/smback). The first level
directory is the mount point of the archive file system. The archive
mount point is used to determine disk usage, using the df command.

ARCH_USAGE Contains the disk usage of the archive directory mount point
/oracle/smback, derived using the df space utilization command. It is
the percent used value. The ARCH_USAGE value is evaluated to
determine if redo logs should be moved to tape (greater than or equal
to 50 percent), or moved to contingency drives (greater than or equal
to 95 percent).

ARCH_CURR_SEQ Contains the current online redo log sequence number. Used to
determine which redo log will be the last one copied to tape. The
order is from the oldest to the most recent redo log.

D.3.5.1.7 Preliminary Checking. The full and redo log backup implementation of the environment
variable declaration function are similar. For details see Paragraph D.3.3.1.6, Preliminary Checking.

D.3.5.1.8 Exit Handling/cleanup Module . The br_back_redo and br_back_full exit handling
functionality are similar in the use of the trap command. The br_back_redo trap command calls the
cleanup module, while the br_back_full trap command calls the end_ts_backup module. The

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-39

cleanup module provides the routines to enforce an orderly exit which will not be affected by an
unexpected premature exit condition. An orderly exit is required because the next time the
br_back_redo program runs it must continue the process of copying the next redo log to the same
tape. The cleanup module performs the general duties of synchronizing the program sequence
number and the last redo log sequence number copied to tape.

The cleanup module is used in the command line of the first trap and is called when a normal
exit is completed. The second trap is triggered when an unexpected exit occurs, and it communicates
its status to the cleanup module by setting the EXIT_STATUS flag to "2". After the second trap is
triggered, the first trap will run, and the cleanup module will be called with an EXIT_STATUS of "2".
When a normal exit is completed, the EXIT_STATUS retains the original program setting which can
be a "0" or a "1". The cleanup module interprets exit status and, depending on the value, performs
the functions shown in Table D-4.

Table D-4: Redo Log Backup Program Exit Status Flags.

EXIT_STATUS MEANING/CLEANUP ACTION

0 or 1 The program completed a normal exit.

2 with tar error Unexpected exit. The current tape could be damaged. The program encountered an
error while copying a file to tape. Take the appropriate measures to override the tape
verification process which will allow the user to use a different tape next time
br_back_redo is executed.

2 with no tar error Unexpected exit. Determine if any redo log files were copied to tape. If so, extract the
last file copied to tape and compare the redo log sequence number to the value store in
the last_copied_seq file. When the redo log sequence numbers are the same, then the
program and tape redo log sequence numbers are in sync. When the redo log sequence
number on tape is greater than the last_coped_seq sequence, then the redo log file was
copied to tape but not removed from the hard drive. The redo log must be deleted from
the drive or it will be recopied to tape when the program starts again.

The cleanup module is executed every time br_back_redo exits, but the EXIT_STATUS
value will determine which action is taken.

D.3.5.2 Tape Verification Process. The tape verification process is designed to implement the
necessary steps to ensure that redo log files are copied to a redo log tape in successive order until the
tape becomes full. For example, the redo log backup program copies all redo logs up to redo log
sequence 90 to tape during one session. When the next session starts, the program needs to copy
redo logs 91, 92, and 93 to the same tape. The tape verification process not only verifies the redo
log tape but must also ensure that redo log 91 is copied to the tape which contains redo log 90. The
sequence of redo logs must be maintained or the redo log restore program will not work. The tape
verification process also prepares a new tape with a REDO_LOG header. The identify_tape and
create_header modules are used to perform the tape verification process.

D.3.5.2.1 identify_tape Module. The identify_tape module executes the verification routines
which prevent the user from accidentally overwriting a cumulative or full tape. It also keeps track
of the redo log sequence order on tape.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-40

The identify_tape module is called from the main module to process the first tape and from
the exec_tar_process module to process subsequent tapes. The identify_tape module is included
as part of the while command conditional expression. This allows the main program to test the
returned EXIT_STATUS. It uses the returned EXIT_STATUS to determine if the correct tape header
was found. If the module returns a "1", then it found the correct tape and the while loop is
terminated. If it returns a "0", the main program initiates the send_msg_to_term module and
continues looping calling the identify_tape module. It will break out of the loop if it finds the correct
header, encounters an error, or times out (approximately three hours) without finding the correct
tape. The message prompts are repeated at set intervals of 60 seconds when a user action is required.

For example, if a full backup tape is inserted, the backup cannot continue until the correct
redo log backup tape is inserted. The messages are repeated until the required action is completed
or a maximum time interval of approximately three hours is reached. For a detailed description of
messages see Paragraph D.3.3.1.4, User Prompting/send_msg_to_term Module.

INPUT ARGUMENTS:

C First Argument Describes the type of backup and is used when messages are
displayed.

C Second Argument Called from the main module. Tells the identify_tape module
to continue appending logs on current redo log tape.

INITIAL_PASS:

C Second Argument: Called from exec_tar_process. Tells the identify_tape module
that the current tape is full. The module will allow the user to start the redo log copy
process with a new tape or a previously used tape.

OUTPUT PARAMETERS:

1 Terminate identify_tape while loop:

C Indicates that the identify_tape process verified the tape type and starting log
redo sequence number.

C The module encountered a tar error. Before the module returns a "1" it
creates a new REDO_LOG file header on tape and on the hard drive.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-41

0 Continue the identify_tape while loop.

C Indicates that the inserted tape is a full or cumulative backup tape.

C The tape has a REDO_LOG file header but the log redo sequence numbers on
tape are out of sync.

The identify_tape procedures are designed to handle each of the following three situation:

C Situation One. No Tape Loaded— Create an offline message, wait, and try again.

C Situation Two. At the Beginning of Tape:

- identify_tape called with INITIAL_PASS Argument. In this situation the
verification process enforces the continuation of redo logs on the same tape
currently in use for redo log backups. The program will not allow the user to
change tapes until the current redo backup tape is full. The procedures to
accomplish this are as follows:

-- Extract the beginning redo log sequence number from the header on
tape. Verify that the start sequence from the header on tape matches
the starting redo log sequence number from the header on the hard
drive. If the redo log sequence numbers match, move the tape
forward to the end of recorded media and return a "1" to terminate the
while loop. The redo logs will be appended to the end of the tape. If
the redo log sequence numbers do not match then return a "0" and
display the wrong tape message and restart the verification operation.

-- The identify_tape module will call the create_header module if the
tape is new or tar error occurs.

- identify_tape called with NEXT_TAPE Argument. In this situation the
verification process enforces the continuation of redo logs on a new tape or
a previously used redo log backup tape. The program will not write redo logs
on the currently used tape because it is full. The procedures to accomplish
this are as follows:

-- Extract the beginning redo log sequence number from the header on
tape. Verify that the start redo log sequence from the header on tape
does not match the starting redo log sequence number from the header
on the hard drive. If the redo log sequence numbers do not match,
rewind the tape and return a "1" to terminate the while loop, then call
the create_header module. If the redo log sequence numbers are the
same, then return a "0" and prompt the user to insert the next tape.
The identify_loop will continue.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-42

-- The identify_tape module will call the create_header module if the
tape is new or a tar error occurs.

C Situation Three. Not at The Beginning of Tape - In this case the module will
attempt to identify the last file written to tape to see if it is a redo log file. If it is a
redo log file, the tape goes to the end and returns. If it is not a redo log file, it
rewinds the tape and displays a wrong tape message. This represents normal
operation. The user leaves the tape in the drive and, whenever the redo log backup
program kicks off, it continues to write on the same tape until it is full. If any other
conditions exist (tar error, etc.,), it will place an error flag in the REDO file header
on the hard drive, so the user can use a different redo backup tape on the initial run.

D.3.5.2.2 create_header Module. The create_header module creates a new header on a blank tape
or overwrites the old header. The header file (REDO_LOG) contains the date and redo log
sequence number of the first redo log written to tape. The starting redo log sequence number is used
by the identify_tape module in its verification process.

D.3.5.3 Redo Log Backup Process. The main objective of the backup process is to locate redo logs
residing in the archive default and contingency directories, copy those redo logs to tape and then
remove them from the source directories. The backup process accomplishes that objective by
completing the following three functions:

C Locating the Archive Redo Logs — search all file systems owned by the <oracle>
user and compile a list of redo log files.

C Processing Redo Log Sequence Numbers — sort the redo log sequence number
portion of the redo log file name and verify the starting and ending redo log sequence
number.

C Moving Logs to Tape — verify the redo log sequential order. If out of order, keep
track of the missing range of redo log sequence numbers then copy the tar file to
tape.

D.3.5.3.1 Locating the Archived Redo Logs. Locating the archived redo logs is the first stage in
the backup process. The br_back_redo program calls the get_arch_file_list module which performs
this task. The get_arch_file_list module searches all mounted file systems owned by the <oracle>
user. It uses the $ARCH_FORMAT_[0-9]*.log pattern to qualify the redo log files. The
ARCH_FORMAT variable is initialized with the name of the redo log files without the redo log
sequence number or file extension (e.g., SM_1234.log -> SM). All redo log files that match the
pattern are assigned to the ARCH_FILE_LIST variable.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-43

D.3.5.3.2 Processing Redo Log Sequence Numbers. This stage of the backup process is required
because the archived redo log sequence is critical. The archived redo logs are copied to tape in
sequential order from the oldest (smallest) sequence to the most recent (largest) sequence. The
sequential order must also be applied to archived redo logs located on contingency drives which must
be merged and sorted along with redo logs located in the archived redo log default directory.

The sequential order is maintained by processing the redo log sequence numbers. The
sequence numbers are stripped from the redo log files assigned to the ARCH_FILE_LIST variable.
See Locating the Archive Logs, Paragraph D.3.5.3.1, for more information on the ARCH_FILE_LIST
variable. Once the redo log sequence numbers are sorted in ascending order, all redo log sequence
numbers which are older (less) than the last redo log sequence copied to tape are removed. This
insures that, in the event a redo log file was copied to tape and not removed, it will not be recopied
to tape. The processed redo log sequence numbers are assigned to the SEQ_NUM variable. The first
redo log sequence number in the list is assigned to the OLDEST_SEQ variable. The
MOST_RECENT_SEQ variable is derived by decreasing the current online redo log sequence number
by one. The list of sequence numbers along with the OLDEST_SEQ and MOST_RECENT_SEQ
variables are used in copying the redo log files to tape.

D.3.5.3.3 Moving Redo Logs to Tape. Moving the archived redo logs to tape is the final stage of
the backup process. At this point the redo log sequence numbers are in order, and boundaries for the
oldest and the newest redo log sequence numbers are established. This information is used to process
each redo log file before they are copied to tape by determining the starting redo log sequence and
verifying the sequential order. If gaps are found in the redo log sequential order, then the program
alerts the user to the missing range of redo log sequence numbers. To accomplish this task, the
program calls tar_arch_logs and exec_tar_process modules. The br_back_redo program calls the
tar_arch_logs module which starts the process. The tar_arch_logs module calls the
exec_tar_process when a redo log file is ready to be copied to tape.

D.3.5.3.3.1 tar_arch_logs Module. This module is called from the main module after the archive
redo log list is generated, and the redo log sequence numbers are sorted. The list of redo log
sequence numbers drives a for loop construct. Each redo log sequence, from a complete list of redo
log files, is compared to a CURRENT_SEQ sequence which is initially set to the last copied sequence
plus one. The CURRENT_SEQ sequence is used to detect any redo log file sequences that are
missing so that the user can be aware that a gap exists between redo logs. The CURRENT_SEQ
sequence is normally incremented by one and if each redo log sequence from the list is equal to the
CURRENT_SEQ value then the redo logs are in order. If at any point the redo log sequence does
not equal the CURRENT_SEQ, the gap is noted and the SEQUENCE is then set to the redo log
sequence that was out of order and the process continues. In any case, the redo log file is copied out
to tape and removed.

The CURRENT_SEQ sequence number is used to look-up the redo log file name and path
in the list of redo logs generated by the get_arch_file_list module. Once the redo log file name is
found, the directory path is separated from the redo log file name and both values are used as input
parameters to the exec_tar_process module. At that point the files are copied to tape.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-44

D.3.5.3.3.2 exec_tar_process Module. The exec_tar_process is called from the previous module
tar_arch_logs. exec_tar_process performs the tar operation for tar_arch_logs. It copies the tar
file to tape excluding the directory path (allowing the restore program to extract the tar files to the
default oracle archive directory). It then removes the redo log file from the hard drive and returns
to the calling module. The exec_tar_process manages the end of tape operation and calls the
identify_tape with the NEXT_TAPE argument. (See Paragraph D.3.5.2, Tape Verification Process,
for more information on identify_tape.)

INPUT ARGUMENTS:

C First Argument The redo log file name. It is used as part of the tar command.

C Second Argument The full path. It is used to locate and remove the redo log file
from the hard drive.

D.3.5.4 Contingency Process. The main objective of the contingency process is to relocate the
excess redo log files from the archive directory to the available contingency file systems. This
situation occurs when the archived redo log storage area becomes greater then or equal to 95 percent
full and the redo log backup program is locked out by a full or cumulative backup. The contingency
process completes the following functions:

C Finding Available Contingency Drives — finds all available <oracle> user mount
points and sorts them by free disk space (greatest amount to the least).

C Relocating Excess Redo Log Files — relocates excess archive redo log files to
available <oracle> user file systems until the disk usage of the archive redo log file
system is reduced to less than 50 percent or until all contingency file systems are used.

D.3.5.4.1 Finding Available Contingency Drives/arch_move_logs Module. The first phase of
finding available contingency drives is sorting all mounted file systems by the availability of free space
in descending order. This helps reduce fragmentation over time. The second phase involves the
process of qualifying each mounted file system owned by the <oracle> user under the following
criteria:

C The mounted file system must have enough free space to hold at least ten archived
redo log files. The redo logs are moved in batches of ten between each available
archived free space check because the df command is cpu intensive (i.e., it should not
be used after each redo log is moved).

C The mounted file system cannot be ORACLE_HOME or the archived redo log default
directory.

The arch_move_logs module accomplishes the task of locating available contingency drives.
It is called from the main module after the archived log list is compiled and the redo log sequence
numbers are sorted. The loop is driven by the space usage output of a processed df command. If a

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-45

file system meets the criteria of the second phase described in the paragraph above, then the
arch_move_logs module calls the find_and_move module and executes the relocation operation.

D.3.5.4.2 Relocating Redo Log Files/find_and_move Module. This stage completes the
contingency process and works in conjunction with the arch_move_logs module. After the
arch_move_logs module secures a contingency file system it calls the find_and_move module. The
find_and_move module performs the operation of moving redo logs to contingency drives.

The find_and_move module uses a sorted listing of archived redo logs. The listing is
processed by a loop construct which provides the driver for moving each redo log into the
contingency directory. The module moves redo logs in batches of 10 redo logs and checks archive
redo log disk usage. The find_and_move module continues moving redo logs until archive redo disk
usage is less than 50 percent or until the contingency file system is full. It then returns the current
archived redo log directory usage to the calling module.

The arch_move_logs module evaluates the returned value. If the value is greater than or
equal to 50 it continues to call the find_and_move module. If the value is less than 50, it terminates
the relocation process.

D.3.5.5 Contingency Space Usage Process/check_free_space Module. The contingency space
usage process provides an emergency plan of action when all the following conditions exist:

C All contingency file systems are full
C The redo log backup program is locked out
C Free archived redo log storage space has reached critically low levels.

In this case the relocation of redo logs is not an option. The only available option is to
terminate the backup program that is preventing the redo log backup from running.

The contingency space usage process accomplishes this by calling the check_free_space
module and evaluating the returned value. The check_free_space module returns the combined
average disk usage of all <oracle> user contingency file systems. If the average contingency disk
usage is greater than or equal to 95 percent, the error handler is called. The full or cumulative backup
program preventing br_back_redo from running is killed and the appropriate messages are sent.

The check_free_space module is called from the main program after contingency process is
finished. It uses the output of the df command to calculate the combined average disk usage. This
value is returned to the main program were it is evaluated.

D.3.5.6 Status Report Process. The redo log and full backup exit status reports have the same
function. The only difference is the output of a successful report. The redo log exit report prints a
range of redo log sequences that were copied to tape. It also alerts the user to ranges of redo logs
that were not found. See Paragraph D.3.3.5, Status Report Process, for more details.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-46

D.3.6 Full/Cumulative Restore Programs — br_restore_full/br_restore_cum. The
br_restore_full and br_restore_cum programs share the same functionality. The br_restore_full
program restores all the database files from the full backup tape and the br_restore_cum program
restores all the database files from the cumulative backup tape. As each program extracts files from
tape, the program keeps track of multitape restore sessions and prompts the user for the next tape
in sequence. Both the br_restore_full and br_restore_cum programs are designed to restore the
database files by completing the following four processes:

Program Initialization Process — deals with program termination, user/program interaction
and preliminary checking.

Tape Verification Process — performs identification of full or cumulative backup tapes and
enforces the correct type of tape and the correct redo log sequence.

Database File Restore Process — extracts the files from tape so they can be restored to the
original directory paths.

Status Report Process — compiles and prints a backup summary log which contains the
backup status (successful, successful with warnings, and terminated with the error message).
If the program was successful, it will contain the database files copied to tape grouped by
tablespace name. The file is printed out at the end of the backup, and the user can place the
printout in the backup binder.

OUTPUT FILES:

exit_status — gives the user a backup summary log which contains the exit status of the
program (successful, successful but encountered errors, and terminated with the error
message). In addition, if the program was successful, it will contain the range of redo log
sequence numbers moved to tape and the ranges of redo log sequences that were out of
order. exit_status produces a printout of the above information and the user can place the
printout in the backup binder.

error.log — an accumulation of all error messages.

TEMPORARY FILES:

C /tmp/LK_RESTORE_FULL$$: Created when the program first starts and locks
out any other instance of the backup or restore program from running concurrently.
The file is removed when the program terminates via the trap command and is
removed from the /tmp directory automatically if the system is rebooted.

C /tmp/LK_RESTORE_CUM$$: Same as the LK_RESTORE_FULL$$.

C /tmp/br_err_msg$$: All error messages are initially written to this file which is then
output to the current_progress and exit_status file.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-47

C /tmp/error_flag$$: Contains the output of the SQL*DBA command and is used to
determine the state of the database (closed or online). Contains the results of
connecting to ORACLE and will contain errors because the database is not online
when performing a restore.

C /tmp/restore.list: Contains the current list of database files restored from tape. The
list is kept up to date by appending the restored file name to the restore.list file each
time the tar command is executed. The contents of the file are then displayed to
screen so the restore process can be monitored.

GENERAL ERROR HANDLING:

C All routine errors are trapped by the handle_error external module, including
write/permission errors, lock errors (another backup/restore program is currently
running), and tar I/O errors. Refer to Paragraph D.3.2, External Error Handler
Module handle_error for more details.

C When one of the routine errors described above occurs, the program writes the
appropriate error message to the error.log, current_status and exit_status files.
Then the error message is mailed to the <oradba> and <secman> user accounts.

There are two types of errors: terminal and nonterminal. A terminal error causes the program
to output the errors and exit. A nonterminal error causes the program to output the errors and
continue. Terminal errors are for login violations, file I/O errors and any tar I/O errors.

D.3.6.1 Program Initialization Process. The program initialization process is comprised of the
following functions:

C User/Program Interaction, Paragraph D.3.6.1.1
C Environment Variable Declaration, Paragraph D.3.6.1.2
C Preliminary Checking, Paragraph D.3.6.1.3
C Emergency Error Handling, Paragraph D.3.6.1.4.

D.3.6.1.1 User/Program Interaction. The br_restore_full and br_restore_cum programs are
executed from the BACKUP AND RECOVERY MENU. This gives the user the option to quit or
continue at certain stages of the restore process or under certain conditions. The program prompts
the user and waits for a response to continue or, in some cases, gives the user the option to quit. The
restore programs require minimum user interaction. Each program displays the current progress, exit
status report, and any errors encountered to the screen. In addition, the exit_status is printed.

D.3.6.1.2 Environment Variable Declaration. It is important to note that the TAPE,
ORACLE_HOME, and ORACLE_SID environment variables are initialized in the br_main_menu
program and exported to the restore programs. The br_restore_full/cum program initialization
derives the environment declaration and error checking from the br_main_menu program.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-48

D.3.6.1.3 Preliminary Checking. The br_restore_full/cum program initialization derive the
preliminary checking from the br_main_menu program which has the same function as performed
by the full backup program. See Paragraph D.3.3.1.6, Preliminary Checking, for details.

D.3.6.1.4 Emergency Error Handling. An emergency exit occurs as a result of a system failure or
unexpected program termination. Emergency exits are handled via a trap command which is
responsible for removing temporary and the lock files. The signals which trigger the trap command
are shown in Table D-5.

Table D-5: Full/Cumulative Restore Emergency Error Handling.

SIGNAL MEANING AND TYPICAL USE

1 Hangup— stop running. User selects the TERMINATE FULL BACKUP option from
the BACKUP STATUS MENU.

2 Interrupt— stop running. Sent when a user types <^C>.

5 Quit— stop running. Sent when a user types <^\>.

9 Kill— stop immediately. Emergency use.

15 Optional signal which can be used to terminate cleanly if possible.

D.3.6.2 Tape Verification Process. The tape verification process performs the following functions:

C Restore Preparations, Paragraph D.3.6.2.1
C Tape Verification/identify_rtape — External Module, Paragraph D.3.6.2.2.

D.3.6.2.1 Restore Preparations. Restore preparations include disabling the <oradba> user
crontab file and shutting down the database. The <oradba> user crontab file is disabled to prevent
a scheduled backup from executing while in the process of restoring files from tape. The database
is shutdown to preserve the integrity of the database files.

D.3.6.2.2 Tape Verification/identify_rtapes — External Module. The identify_rtapes external
module is designed to identify the tape type and track of the correct tape sequence (FULL_1, and
FULL_2). The identification of the tape type and sequence insures that the Full Restore program
will restore files from the FULL_1 tape and will not allow the user to accidently restore files from
a FULL_2, CUM_1, or some other tape.

The identify_rtape external module is called from the full and cumulative restore programs
after the user acknowledges the prompt for the first tape and for each tape required to complete the
restore process. It verifies the state of the tape drive (e.g., determines if a tape is inserted) and the
FULL_n or CUM_n tape type then prompts the user for a particular action if a certain verification
fails. identify_rtape is self-contained and performs the same function for both the full and
cumulative backups. See Paragraph D.3.3.2.1, identify_btape External Module, for details.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-49

ARGUMENTS:

C First Argument CUM_$TAPE_CNT/FULL_$TAPE_CNT — the type of
restore (full or cumulative) and current sequence (1..N).
Compares this parameter with the name of the first file on tape
to determine if they are the same.

C Second Argument Program initialization Directory Path — directory where the
br_back_full or br_back_cum resides. The path is used to
locate the current_progress file when writing the status
messages.

C Third Argument Application Name — the application name "Full Restore" or
"Cumulative Restore" which is used in the status and error
messages.

RETURNED EXIT STATUS:

0 Tape verification was successful. The tape was identified.

1 Tape verification was unsuccessful. This may result if a tape is out of sequence, if a
redo log backup tape or some other tape is in the drive, or from a tar error. It may
also result if the tape drive is busy or the verification process has timed out after
approximately three hours.

The identify_btape and identify_rtape implementation strategies are very similar except that
identify_btape identifies a tape to be written to, and the identify_rtape identifies a tape to be read
from. The differences are in the way identify_rtape handles an unknown tar error condition and the
position of the tape when it returns successfully. identify_rtape terminates the program when it
encounters a tar error while the identify_btape returns and tries to create a header file on the tape.
identify_rtape returns with the tape positioned after the header file and at the beginning of the first
database file while the identify_btape rewinds the tape to the beginning before it returns.

D.3.6.3 Database File Restore Process. The restore process performs the task of restoring each
database file from tape to the original directory path, (displaying a current list of restored files), and
determining if additional tapes are required to complete the restore process. These tasks are
performed for each database file restored from tape.

The main component of the restore process is the tar command. As the tar command restores
the files from tape, the output of the command containing the file name is redirected and appended
to the restore.list file. The restore.list file contains the current list of restored files and is displayed
to screen after each execution of the tar command. The restore process determines if additional tapes
are required by searching for the EOB file at the end of the tape after all the files on tape are
restored. If the EOB file is found, the restore process rewinds the current tape and terminates the
process. If the EOB file is not found, the restore process suspends the current operation, prompts

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-50

the user for the next tape, performs the tape verification process, then continues with the restore
process.

D.3.6.4 Status Report Process/create_exit_log Module. The status report process provides the
user with a summary of the overall restore status. If the status is successful, the report will contain
the database files restored from tape. A terminated status report will include the errors which caused
the interruption. The status report is displayed on the screen and will remain on the screen until the
user acknowledges the report by pressing <return>. This insures that the user will not miss the
results of the restore program. The status report is then sent to the printer.

The module is called from the main programs when a fatal error is encountered and the
program cannot continue or when the restore program completes successfully. The module evaluates
the input arguments and determines the status. The module categorizes the status into two
possibilities:

C SUCCESSFUL — The tape verification and restore processes completed all
operations. All database files were restored from tape.

C TERMINATED — Tape verification or restore process encountered a fatal
ORACLE, tar, or Unix error. The restore operation must be repeated.

INPUT ARGUMENTS:

C First Argument Indicates the status category (success or terminated).

C Second Argument The current runtime directory which the status report uses
when writing out the report to a file and locating the
restore.list file.

C Third Argument Indicates the calling application name (Full Restore or
Cumulative Restore). The name is used in the status report
header.

D.3.7 Redo Log Restore Program — br_restore_redo

The br_restore_redo program runs after the Full and Cumulative restore programs and
restores the database up to the point of failure. It acts as an interface to the ORACLE recovery
process by managing the redo logs required to restore the database. The program also works with
ORACLE in applying those archived redo logs.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-51

The program extracts only the required archived redo logs from tape and searches the
contingency drives for additional redo logs required for the recovery of the database.
br_restore_redo works in conjunction with ORACLE SQL*DBA to determine if any redo logs are
required from tape. The br_restore_redo program is comprised of the following processes:

C Program Initialization Process — handles program termination, user/program
interaction, and preliminary checking.

C Restore Preparation Process — performs required preliminary tasks (database
shutdown, disabling cron, and running SQL*DBA) in order to prepare for the tape
verification process.

C Tape Verification Process — performs identification of the redo log backup tape. It
enforces the correct tape type and verifies that the required starting redo log sequence
number is stored on tape. In addition, the tape verification process locates the specific
starting redo log on tape before the restore process takes place.

C Redo Log Restore Process — extracts the redo log files from tape so they can be
restored to the original directory paths.

C Redo Log Location Report Process — compiles and prints a report which shows the
location of redo logs within each contingency drive and the ORACLE commands
required to apply the redo logs to the database.

C Status Report Process — compiles and prints a report which shows the overall status
of the program (successful or terminated because of an error). In addition, if the
program was successful, it shows the range of redo logs sequences restore from tape.

OUTPUT FILES:

archive_dest — contains a backup copy of the archive redo log default directory path.
Normally, br_restore_redo derives the archived redo log directory path from the ARCHIVE
LOG LIST command. If ORACLE is unavailable, the br_restore redo program uses the
archive_dest value.

last_copied_seq — contains the last redo log sequence number copied to tape. Used to
verify the starting redo log file. If the program finds any redo logs with sequence numbers
less than the last_copied_seq, then those redo log files will not be included in the tar list.

current_progress — gives the user the ability to check the progress of the program. The file
contains messages which describes all program events taken place so far. The
current_progress will also contain any program errors.

exit_status — gives the user a backup summary log which contains the exit status of the
program (successful, successful but encountered errors, and terminated with the error

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-52

message). In addition, if the program was successful, it will contain the range of redo log
sequence numbers moved to tape and the ranges of redo log sequences that where out of
order. The exit_status produces a printout of the above information, and the user can place
the printout in the backup binder.

error.log — an accumulation of all error messages.

TEMPORARY FILES:

/tmp/br_err_msg — all error messages are initially written to this file which is then output
to the current_progress and exit_status file.

/tmp/REDO_LOG — header file from tape containing the date and starting log sequence
number. The header file is used to identify the tape and to verify that the starting sequence
number on tape is greater than the sequence number that is required to begin recovery.

/tmp/LK_RESTORE_REDO$$ — locks out any other instances of the backup or restore
program from running concurrently.

GENERAL ERROR HANDLING:

C All routine errors are trapped by the handle_error external module, including
write/permission errors, lock errors (another backup/restore program is currently
running), and tar I/O errors. Refer to Paragraph D.3.2, External Error Handler
Module handle_error, for more details.

C When one of the routine errors described above occurs, the program writes the
appropriate error message to the error.log, current_status and exit_status files.
Then the error message is mailed to the <oradba> and <secman> user accounts.

D.3.7.1 Program Initialization Process. The program initialization process is comprised of the
following functions:

C User/Program Interaction, Paragraph D.3.7.1.1
C Environment Variable Declaration, Paragraph D.3.7.1.2
C Preliminary Checking, Paragraph D.3.7.1.3
C Emergency Exit Handling, Paragraph D.3.7.1.4.

D.3.7.1.1 User/Program Interaction. The br_restore_redo program is executed from the
BACKUP AND RECOVERY MENU. Restore programs selected from this menu run in program
mode. The user has the option to quit or continue at certain stages of the restore process whenever
the user prompts are displayed. The program displays the current progress, Log Location Report,
Status Report, and any errors encountered to the screen.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-53

D.3.7.1.2 Environment Variable Declaration. It is important to note that the TAPE,
ORACLE_HOME, and ORACLE_SID environment variables are initialized in the br_main_menu
program and exported to the restore programs. The br_restore_redo program initialization process
derives the environment declaration and error checking from the br_main_menu program.

D.3.7.1.3 Preliminary Checking. The br_restore_redo program initialization process also derives
the preliminary checking from the br_main_menu program which has the same functionality as the
full backup. See Paragraph D.3.3.1.6, Preliminary Checking, for details.

D.3.7.1.4 Emergency Exit Handling. An emergency exit occurs as a result of a system failure or
unexpected program termination. Emergency exits are handled via a trap command which is
responsible for removing temporary and locked files. The signals which trigger the trap command
are shown in Table D-6.

Table D-6: Redo Log Restore Emergency Error Handling.

SIGNALMEANING AND TYPICAL USE

1 Hangup— stop running. Sent when a user selects the TERMINATE FULL BACKUP
option from the BACKUP STATUS screen.

2 Interrupt— stop running. Sent when a user types: <KEYBOARD()>.

5 Quit— stop running. Sent when a user types: <>.

9 Kill— stop immediately. Emergency use.

15 Optional signal which can be used to terminate cleanly if possible.

D.3.7.2 Restore Preparations Process. Restore preparations include disabling the <oradba> user
crontab file, shutting down the database, and running the SQL*DBA program. The program
functions in the following sequence:

C The <oradba> user crontab file is disabled to prevent a scheduled backup from
executing when the program is restoring files from tape. This is critical because the
redo log backup contingency process is designed to move redo logs from the archive
directory when disk usage is greater than or equal to 95 percent. It is possible, while
restoring redo logs from tape, that the archive disk usage could exceed 95 percent if
crontab is not disabled. In this situation, it is possible that restored log files could be
moved to contingency drives before being applied to the database. This would cause
a delay in database recovery.

C The database is shutdown to preserve the integrity of the database files.

C The program provides access to SQL*DBA because the initial process of applying the
redo logs to the database is accomplished through ORACLE. When the user enters
the <ALTER DATABASE RECOVER> command at the SQL*DBA prompt,
ORACLE searches the archive directory for the redo log sequence which matches the

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-54

oldest missing database changes. The results of the RECOVER command determine
if ORACLE found the required redo log files in the archive directory, or if the starting
redo logs are on tape. If the RECOVER command completes successfully, then the
recovery process is complete. If the RECOVER command senses a missing sequence,
then the restore process required additional redo logs from tape. If it cannot find the
starting redo log sequence, it displays the missing redo log sequence number. The
user is required to enter the redo log sequence number in order for the program to
continue to the tape verification process. The missing redo log sequence is the
starting redo log sequence for redo logs required from tape, up to and including the
last redo log sequence copied to tape.

D.3.7.3 Tape Verification Process. The tape verification process performs the following functions:

C Tape Verification, Paragraph D.3.7.3.1
C Tape Positioning/find_seq_log Module, Paragraph D.3.7.3.2.

D.3.7.3.1 Tape Verification/identify_tape Module. The tape verification function performs the
task of identifying the tape type and verify that the required starting redo log sequence is on tape.
The function will only accept tapes with the REDO_LOG header as the first file. Once the tape is
accepted, the first sequence on tape is compared with the missing starting redo log sequence required
to recover the database. The tape verification function will only accept redo log tapes where the first
redo log sequence on tape is greater than the missing starting redo log sequence. This is a time
saving feature. The tape verification function also prompts the user for a particular action if
verification fails.

The identify_tape module is called from the following:

C Main Body: Calls identify_tape after the user acknowledges the prompt for the first
tape.

C extract_log Module: extract_log restores redo log files from tape and calls the
identify_tape module when redo logs from an additional tape are required to
complete the restore process.

C find_seq_log Module: find_seq_log searches the redo log backup tape for the
starting redo log and will call identify_tape when it encounters the end of tape
without finding the redo log.

The identify_tape module is called as part of the if command conditional expression. This
allows the calling module to test the returned exit status. It uses the returned exit status to determine
that the correct tape header was found. If the subprogram returns a "0" then it found the correct
tape. If it returns other than "0", the calling module initiates the exit routines and terminates with an
error.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-55

INPUT ARGUMENTS:

C First Argument: Describes the type of backup and is used when messages are
displayed.

RETURNED EXIT STATUS:

0 Tape verification was successful. A REDO_LOG file header was found and the
starting redo log sequence is on tape.

1 Tape verification was unsuccessful which could result from a full/cumulative backup
tape or some other tape, a tar error, or tape drive was busy.

The identify_tape module is designed to reinitiate the verification process if it encounters an
empty tape drive or the wrong tape. It accomplishes this by incorporating the verification tests in a
while loop construct. The while loop is broken if the correct tape is found or by user request (via
message prompts). The while loop will continue until the correct tape is found, the drive is busy or
a tar error is encountered. The identify_tape module performs the following verification tests:

C No Tape Loaded — create an offline message and wait for user acknowledgement.
Start again or quit as per user input.

C At the Beginning of Tape — extract the redo log sequence number from the header
on tape. This redo log sequence number identifies the first redo log on tape. The
extracted redo log sequence number must be greater then the redo log sequence
number required to start the recovery process. If the extracted redo log sequence
number is less then the starting sequence, the user is alerted and the verification
process continues with the next inserted tape.

C Not at the Beginning of Tape — determine if the drive is busy. If it is busy, then
handle the error and break out of the loop. If the drive is not busy, then rewind the
tape and restart the verification function.

D.3.7.3.2 Tape Positioning/find_seq_log Module. The tape positioning function performs the task
of reading each redo log on tape until it finds the redo log on tape which is required to begin the
recovery process. If the redo log is found, the tape will be properly positioned to begin the restore
process.

The find_seq_log module is called after the identify_tape has successfully verified the initial
redo log backup tape. It uses a tar tvb and grep command to move the tape forward while searching
for the matching redo log sequence number. When the module reads the matching redo log sequence,
the tape is moved forward to the next redo log file. The tape must be repositioned to the beginning
of the previous matching redo log.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-56

D.3.7.4 Redo Log Restore Process. The restore process manages the various operations involved
in restoring the required redo log files from tape to the archive redo log default directory. It keeps
track of available space in the archive redo log directory while redo logs are being extracted from
tape. When free space on the archived disk becomes critically low, it suspends the restoration of redo
logs to the database and enters SQL*DBA. The user now has the opportunity to apply those
extracted redo logs to ORACLE. Upon exiting SQL*DBA, those redo logs are removed from the
archive redo log directory. The restore process accomplishes these operations by using the following
functions:

C Extracting Redo Logs from Tape, Paragraph D.3.7.4.1
C Applying the Restored Redo Logs/rm_log_scrn Module, Paragraph D.3.7.4.2.

D.3.7.4.1 Extracting Redo Logs from Tape. This function is comprised of a two-fold operation
which includes extracting log files from tape to the ORACLE default archive redo log directory and
keeping track of the available archive redo log directory space while the redo logs are being restored.
The two-fold operation makes best use of the available archive redo log directory space by restoring
redo log files until the space is full. The redo logs are then applied to the database and removed so
the space can be reused. If all the redo logs are restored from the starting redo log sequence to last
redo log sequence copied to tape, then the space management operation is not necessary.

D.3.7.4.1.1 space_avail Module. The space_avail module controls the number of redo logs
restored to the archive redo log directory. The space_avail module controls the flow of redo logs
through construction of the while conditional expression (e.g., while space_avail). For each redo
log restored, the space_avail module is called in order to determine the current disk usage for the
archive redo log directory. Depending on the returned status of the space_avail module, the while
loop will continue or break out. The called module will return a "1" if disk usage is greater than or
equal to 95 percent or, if the last redo log restored, is the last redo log sequence required from tape
to complete the recovery.

D.3.7.4.1.2 extract_log Module. The extract_log module works in conjunction with the
space_avail module. For each iteration of the while space_avail loop, the extract_log module is
called. The tar command is used to extract each redo log.

D.3.7.4.2 Applying the Restored Redo Logs/rm_log_scrn Module. When the while space_avail
inner loop is broken, the restored redo log is applied. This function uses the SQL*DBA facility to
apply restored redo logs to the database and then removes those redo logs automatically. The apply
and remove operations continue until all required redo logs from tape are applied to the database.
This is accomplished by an outer loop which tests the most recently restored redo log sequence. The
outer loop is broken when the restored redo log sequence equals the last redo log sequence copied
to tape. As long as the most recently restored redo log sequence is less than the last redo log
sequence copied to tape, the inner while space_avail loop is executed and the restored redo logs will
be applied.

The rm_log_scrn is called after the restored redo logs are applied to the database via the
SQL*DBA facility. The module displays a screen showing the beginning and ending redo log

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-57

sequence numbers of applied redo logs. The screen also displays a warning indicating that those redo
logs must be removed. When the user acknowledges the message, the redo logs are removed from
the archive redo log directory. If the user decides not to remove the redo logs, the program is
terminated.

D.3.7.5 Redo Log Relocation Report Process. The redo log relocation report process is initiated
after the restored redo logs from tape are applied to the database. The process manages the operation
of applying redo logs from the contingency drives. Contingency drives act as a redo log contingency
drive overflow area. The process first determines if any contingency redo logs exist by searching all
contingency drives. If any redo logs are found, a redo log contingency report is produced, containing
the range of redo logs on each contingency drive and the SQL*DBA command needed to apply those
redo logs.

D.3.7.5.1 conting_log_notfound Module . The conting_log_notfound module determines if any
redo logs where moved to contingency drives. To accomplish this, the module isolates the sequence
number of the oldest redo log in the archive redo log directory /oracle/smback/arch and compares it
to the last redo log sequence copied to tape. If the oldest redo log sequence in /oracle/smback/arch
is the next redo log required to recover the database, then there is no gap between the logs on tape
and the logs under /oracle/smback/arch. In this case, no logs are located on contingency drives. For
example, if the last redo log sequence copied to tape is 100, and the oldest redo log sequence in
/oracle/smback/arch is 101, no logs are located on contingency drives. In this case the module will
return a "0" and the program will create the status report and exit.

Using a similar example, if the last redo log sequence copied to tape equals to 100 and the
oldest redo log sequence number in the archive directory is 107, then sequences 101 to 106 are
located on the redo log contingency drives. When contingency redo logs are found, the module
returns a "1" and the log relocation report is compiled.

D.3.7.5.2 get_arch_file_list Module. The get_arch_file_list module searches all mounted file
systems owned by the <oracle> user. It uses the $ARCH_FORMAT_[0-9]*.log pattern to qualify
the redo log files. The ARCH_FORMAT variable is initialized with the name of the redo log files
without the sequence number or file extension (e.g., SM_1234.log -> SM). All log files that match
the pattern are assigned to the ARCH_FILE_LIST variable. The logs in the ARCH_FILE_LIST
variable are sorted then formatted (for example, directory_path:log file) and the results are written
to the log.done$$ file. An additional file arch_dir$$ containing a list of directories is also created.
Both files are used to create the redo log relocation report.

D.3.7.6 Status Report Process. The status report process provides the user with a summary of the
overall restore status. If the status is successful, the report will contain the range of restored redo
log sequences. A terminated status report will include the errors which caused the interruption. The
status report is displayed on the screen and will remain on the screen until the user acknowledges the
report by pressing <return>. This insures that the user will not miss the results of the restore
program. The status report is sent to the printer.

DBMM-97-D0070-0037
The Boeing Team Defense Enterprise Integration Services

Delivery Order Number 70 31 March 1997D-58

D.3.7.7 create_exit_log Module. This module is called from the main program when a fatal error
is encountered and the program cannot continue or when the restore program completes successfully.
The module evaluates the input argument and determines the status. The module categorizes the
status into two possibilities:

C SUCCESSFUL — All required redo log files were restore from tape.
C TERMINATED — Tape verification or restore process encountered a fatal

ORACLE, tar, or Unix error. The restored operation must be repeated.

INPUT ARGUMENT:

C First Argument Indicates the status category (0 SUCCESS or 1 TERMINATED).

